编辑:编辑部
【新智元导读】破解「CloseAI」,ChatGPT克隆羊问世!0门槛实现「自研」,从此大语言模型不再只是少数大公司的「金手指」。此前,OpenAI不Open的事件,已经引发了坊间的诸多争议。
光放出基准和测试结果,不提供训练数据、成本、方法,是真的要「赢家通吃」了。
60亿参数堪比ChatGPT,30分钟就训好
由于ChatGPT需要消耗大量的数据和算力资源(利用数万个单词训练,消耗大量GPU),所以这类大语言模型注定只能被少量巨头所掌握。
和「CloseAI」相反,Meta在今年3月向学术界发布了一组高质量(但不是指令跟随的)语言模型LLaMA,每个模型的训练时间超过了80,000个GPU小时。
随后,斯坦福大学基于LLaMA构建了Alpaca,但不同之处在于,它利用一个包含50,000个问题和答案的小数据集进行了微调。令人惊讶的是,这使得Alpaca具有了类似于ChatGPT的交互性。
而Dolly正是受到了Alpaca的启发。
更有趣的是,拥有60亿参数的Dolly并没有利用现在最新的模型,而是选择了一个2021年发布的开源模型——GPT-J。
由于Dolly本身是一个模型的「克隆」,所以团队最终决定将其命名为「多利」——有史以来第一个被克隆的动物。
而这种「创造性」问题,显然是ChatGPT的强项,洋洋洒洒地写了300多个字。
开放问答在事实性问题的问答测试上,团队选择了下面这个:「向我解释一下核裂变和核聚变之间的区别。」
先不管对错,GPT-J全篇都是在讲太阳如何如何,虽然提到了「聚变」这个词,但完全无视了「裂变」。
而Dolly第一句就直接点题——核裂变和核聚变的区别在于释放能量的方式,随后简单解释了他们的不同。
相比之下,ChatGPT给出的回答明显要更加翔实。
头脑风暴当让它们头脑风暴,给出应该阅读的五本科幻小说的名单,GPT-J则只是在喃喃自语,像是沉浸在了拖延阅读而产生的愧疚情绪中,完全回避了这个提问。
Dolly则一如既往的表现稳定,按照指令给出了5本科幻小说的书名及其作者。
ChatGPT对于该问题给出了更加丰富的回答,不仅包括书名和作者,还对每一本书的内容、类型作了简要评述和介绍。
你要Close,我就Open
对于很多公司而言,宁愿自己建立一个不那么强的模型,也不愿将数据发送给那些只提供API的大语言模型供应商。
其中一个重要原因便是,这些问题和数据集是公司最敏感和专有的知识产权,直接将其交给第三方显然是不靠谱的。
此外,公司自身可能在模型质量、成本和期望行为方面有不同的权衡,一种可定制化的语言模型更加符合需求。
现在,Dolly的发布给了他们希望——即便是一个「过时」的开源大型语言模型 (LLM),也能通过30分的训练,赋予它神奇的类似ChatGPT的指令跟随能力。
不难想象,大语言模型或许很快就不是AI巨头公司独占的玩法了!
正如公司CEO Ali Ghodsi所说,「我们的信念是,让全世界的每个组织都能利用这些技术。」
参考资料:
https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html
https://venturebeat.com/ai/databricks-debuts-chatgpt-like-dolly-a-clone-any-enterprise-can-own/
花粉社群VIP加油站
猜你喜欢