智东西 文 | Lina
就在上周的今天,苹果公司在刚刚落成投入使用的“飞船”新总部(Apple Park)举行2017年秋季新品发布会,整场发布会基本被iPhone X抢尽了风头(想采访一下iPhone 8/8p的心理阴影面积)。
除了芯片之外,从2010年至今,苹果已经陆续收购了四五十家创企,包括语音识别、图像/面部识别、计算机视觉、AR、数据挖掘、机器学习、地图、定位等等,而这其中几个比较具备代表性的有:
1)收购面部识别/表情追踪厂商——Animoji和Face ID的技术来源
2010年,苹果以2900万美元收购瑞典面部识别创企Polar Rose,他们开发的面部识别程序可以可以为用户自动圈出照片中的人脸。
2015年11月,苹果收购《星球大战》背后的动作捕捉技术公司Faceshift,这家苏黎世的创业公司开发了实时追踪人脸表情,然后再用动画表现出来的技术。该技术还可以实现面部识别。
2016年1月,苹果收购了加州AI初创Emollient,该公司使用人工智能技术读取图片中的面部表情。
2017年2月,苹果以200万美元收购了面部识别以色列创企RealFace,该公司开发了一种独特的面部识别技术,其中整合人工智能并将人类的感知带回数字过程。
2)收购AR引擎巨头
2015年5月,苹果收购AR引擎巨头德国Metaio公司。彼时Metaio与Vuforia并肩称霸AR引擎行业,Metaio拥有约15万名开发者,Vuforia则拥有大约18万,两家的SDK开发者占到了当时整个市场的95%以上,在AR的行业地位有如Windows和Mac OS之于PC。——可以看作是ARkit的技术来源。
3)收购25年德国老牌眼球追踪企业
而离现在最近的一次收购就是苹果今年6月时宣布收购拥有25年历史的德国老牌眼动追踪企业SMI——SMI全名SensoMotoric Instruments,其历史要追溯到1991年,SMI从柏林自由大学学术医疗研究院剥离出来,独自成立眼球追踪技术公司,迄今已经有超过25年的发展历史了,产品包括面向企业与研发机构的眼球追踪设备/应用、医疗医疗眼控辅助设备、手机、电脑、VR设备等的眼控技术支持等。
目前,眼球追踪技术已经被集成在了iPhone X里。在用Face ID解锁时,只要你眼睛没有看着屏幕,屏幕也是不会解锁的。
四、用来干啥:Face ID背后的结构光学技术既然是“人工智能芯片”,当然是用来做人工智能~人脸识别、图像识别、面部表情追踪、语音识别、NLP、SLAM、等等。
而A11的神经网络引擎第一个重要的应用就是iPhone X的刷脸解锁——Face ID。
虽然刷脸解锁并不是什么石破天惊的新技术,但是苹果的Face ID解锁跟普通的基于RGB图像的人脸识别解锁不同。寒武纪架构研发总监刘少礼博士说,“我们这次对苹果A11的AI引擎了解不多,特别是功耗、实测性能等方面苹果发布会基本没有提。个人觉得iPhone X这次最大的亮点是距离传感器,用来支持3D的Face ID,这个功能在业内还是引起了不小震动,后续会给予这功能开发出不少有趣的应用。通过结构光发射器和红外摄像头配合,可以捕捉人脸的深度信息,比之前用2D图像作人脸识别进步了很多。”
根据原理和硬件实现方式的不同,行业内所采用的3D机器视觉主要有三种:结构光、TOF 时间光、双目立体成像。
发布会现场,苹果还演示了几款AR应用的小样:即时策略游戏《战争机器》(The Machines)、即时战略游戏《战锤40K:自由之刃》(Warhammer 40k:Free Blade)、职业棒球直播《At Bat》、星空注解《Skyguid》。
五、火热的AI芯片产业当前人工智能芯片主要分为GPU、ASIC、FPGA。代表分别为NVIDIA Tesla系列GPU、Google的TPU、Xilinx的FPGA。此外,Intel还推出了融核芯片Xeon Phi,适用于包括深度学习在内的高性能计算,但目前根据公开消息来看在深度学习方面业内较少使用。
(AI芯片一览)
其中,苹果的A11、寒武纪的A1、谷歌的TPU等都属于ASIC,也就是专用集成电路ASIC(Application Specific Integrated Circuit)。顾名思义,ASIC 就是根据特定的需求而专门设计并制造出的芯片,能够优化芯片架构,针对性的提出神经网络计算处理的指令集,因而在处理特定任务时,其性能、功耗等方面的表现优于 CPU、GPU 和 FPGA;但ASIC算法框架尚未统一,因此并未成为目前主流的解决方案。
(寒武纪1号神经网络处理器架构)
(谷歌ASIC产品探索)
现有的ASIC包括谷歌的TPU、我国中科院计算所的寒武纪、应用于大疆无人机和海康威视智能摄像头的Movidius Myriad 芯片、曾用于Tesla汽车自动驾驶和ADAS的Mobileye芯片等针对特定算法以及特定框架的全定制AI芯片。
此外,更近一步的的AI芯片前景,大概是IBM 的TrueNorth这类的类脑芯片(BPU)。类脑芯片的目的是开发出新的类脑计算机体系结构,会采用忆阻器和 ReRAM 等新器件来提高存储密度,目前技术远未成熟。
(不同芯片在人工智能计算方面各有所强)
结语:我们离手机AI芯片还有多远?有着苹果和华为的推进,专用AI处理单元可能会越来越成为智能手机芯片的发展趋势。毕竟目前在生物识别、图形图像识别、用户使用习惯学习等方面都越来越依赖机器学习技术,而不太稳定的网络带宽(大家记不记得早期Prisma要等好久才能生成图片)、个人隐私、功耗比等问题也在驱动着手机芯片集成专用AI处理单元的发展。
不过,搭载A11的iPhone X要到10月27日起才开始预售,11月3日发售,跟其他所有产品9月15日预售+22日发售相比完了将近一个多月,而搭载麒麟970的华为Mate 10也要等到10月16日才在慕尼黑发布。
用上了“神经网络引擎”或是“神经网络计算单元”的手机芯片究竟能发挥多大作用?会给手机体验带来什么改变,是不是“然并卵?”这种种问题都要等到真机上手才能逐渐明确。
但总的来说,无论是A11还是麒麟970,都是让AI在手机端开始由软到硬地落地的表现,是人工智能进一步产业化落地的一个典型代表。
花粉社群VIP加油站
猜你喜欢