从这类软件呈现的图形数据我们能够观察到处理器的性能差异,CPU和NPU在进行相关运算时到底有多大的差距。
此外,还有在摄像头应用方面,Mate 10的摄像头能够在NPU的帮助下,通过推理,来识别不同场景,再基于场景对相机的设置进行智能的优化。
同时,Mate 10中所应用的微软翻译程序也能够使用NPU的离线加速翻译功能,这些都是令我印象深刻的应用。
而在手机内置的图片应用中,也能够智能识别图片来进行分类。
除了NPU能够对卷积神经网络进行相应的视觉处理之外,Cadence 的Tensilica Vision P6 DSP 和高通的Hexagon 680 DSP也能够实现相同的功能,只是目前并没有对终端用户开放而已。
但是,这并不表明,采用NPU的Mate 10就能够为终端用户带来决定性的差异化体验。同样,手机中这类神经网络的应用并没有在汽车,安全摄像头领域出现相同的杀手级应用。另外,由于生态系统的限制性问题,我们只能够在Mate 10见到相关的应用,我们能否在更多的场景中见到,华为是否愿意开发,与开发商一起共同开发,都是值得商榷的事情,不过华为在这方面的创新还是值得肯定的。
正如之前所说,华为和微软共同开发的应用似乎是Mate 10上最吸引人的应用,因此我们可以在此基础之上进行更多的探索。
目前来看,该应用能够智能识别传统的外文文本,并进行翻译,那么在未来是否可以AR方面的应用呢?
联发科在CES上为我们展示了一个相关的识别的例子:使用神经网络的视频会议编码器能够对美国有线电视新闻网的图像和视频进行识别,并反馈给编码器,从而提升视频的质量。
在未来,可以想见,越来越多的设备将会采用这类IP,开发人员也能够更容易的开发相关应用。
最后的思考我在这篇文章里,并不是想强调麒麟970到底有多么的先进,只是希望借此机会表明,未来高端安卓智能手机处理器的竞争和发展格局将会出现很多令人振奋的变化。
随着iPhone智能手机生态系统进入10周年,我们也看到越来越多的垂直整合设备的出现。
并不是说苹果就一定是规则的制定者,只是在未来,一个更加成熟的生态系统当中,公司都需要能够自主的把控发展路线。否则,手机厂商将很难与其他厂商区分开来,更不用说为用户提供差异化的功能,或者与其他厂商竞争。
苹果很早就意识到了这一点。而华为也是目前为止唯一一家能够独自设立目前的OEM厂商。
同时,还有很多准独立厂商也在努力设计自己的芯片,他们凭借从IP供应商那里获得的CPU和GPU等关键零部件来进行设计。
根本上来说,麒麟970在CPU的性能与功率上面并没有与骁龙835有太大的差距,其误差只是体现在cortex-a73在实际应用中的体现而已。
考虑到骁龙820所采用的CPU虽然与三星自主开发的CPU略有差距,但是在实际应用中并不明显,而且三星到目前未知也没有计划去全力发展和整合自主CPU,考虑到这些,华为采用ARM CPU还是很有道理的。
华为的这一策略将来在全行业采用将是不可避免的。
海思的NPU芯片证明海思作为一家芯片设计公司也能够设计出与高通,三星匹敌的处理器。但是,海思的发布时间并不遵循传统安卓手机厂商的发布规律,因此我们预计会有新的处理出现,在性能方面超过麒麟970。
现实是,华为是能够将芯片设计和终端产品整合在一起的唯一两家OEM供应商之一(编者按:其实三星也算一家,但是三星似乎采用高通的方案更多),也是唯一一家安卓厂商。在过去的几年里,这家厂商已经走过了漫长的道路,经历了太多的改进。最重要的是,华为始终能够把目标和执行目标放在一起,坚定不移的朝着移动业务这一正确方向发展,这是他们成功的关键原因。
但对这家中国厂商来说,未来的路还是很长。
原文链接:https://www.anandtech.com/show/12195/hisilicon-kirin-970-power-performance-overview/7
今天是《半导体行业观察》为您分享的第1477期内容,欢迎关注。
花粉社群VIP加油站
猜你喜欢