花粉乐分享平台宣传视频
> 乐学堂 > > 大招or刷榜?OpenAI耗资8500万炼出的GPT3,它真的不香吗
大招or刷榜?OpenAI耗资8500万炼出的GPT3,它真的不香吗
来源:大数据文摘
2023-05-16 21:42:11
519
管理

甚至因为过于昂贵,导致实验过程中即使因为数据处理出现bug,却也没办法重新训,只能在最后评估时进行一些处理。

*其实我想知道最后数据处理的同学心理压力有多大。

读到这,一些细心读者会注意到,怎么提GPT3不是提它爸爸就是提它尺寸提它多么壕,都不提它自身特点。就好比相亲,只看对方爸爸看对方尺寸(大雾)看对方多壕,却不关心这人到底怎样。

那是因为虽然论文长达72页,但得出的结论几句话就能概括,尤其是,The Bigger The Better。

论文指路:

https://arxiv.org/abs/2005.14165

下面我们再来细细介绍这个豪横的GPT3模型。

GPT家族提交史

首先来简单介绍一下GPT3模型和训练的一些细节。形式的话,之前有看到一篇《如果BERT系列模型是一个git提交史的话》的博客,非常有意思。

于是,咱们也照猫画虎来给GPT系列做一个这样的提交史,不光能回顾一下GPT的发展史,还能更好理解GPT3模型的细节。

初步提交:GPT

- Transformer 编码器

模型: 0.11B参数, 12层,768隐层大小,12头,64头大小,512上下文长度

数据:BooksCorpus,1B Word Benchmark

词表:BPE 40000

训练目标:单向语言模型

提交:Improving Language Understanding by Generative Pre-Training

作者:Radford, Alec, et al

日期:Mon June 11 10: 46: 37 2018 0000

里程碑提交:GPT2

模型:1.54B参数, 48层,1600隐层大小,25头,64头大小,1024上下文长度

数据:WebText,抓取 Reddit 上3星以上链接,40GB

词表:50,257

疯狂PR,Too Dangerous Too Release,阶段性饥饿营销

提交:Language Models are Unsupervised Multitask Learners

作者:Radford, Alec, et al.

日期:Thu Feb 14 17: 35: 48 2019 0000

最近提交:GPT3

模型:175B参数, 96层,12288隐层大小,96头,128头大小,2048上下文长度

模型:没说细节的 sparse attention layers

数据:60% Common Crawl (清洗过的),22% WebText2,8% Books1,8% Books2,3% Wikipedia,合计 700 GB

提交:Language Models are Few-Shot Learners

作者:Brown, Tom B., et al.

日期:Thu May 28 15: 43: 40 2020 0000

可以看到GPT3相比起GPT2的变化可能就是给模型增大,数据增多,这和GPT1到GPT2的变化差不多。而从GPT1到GPT2时发生这样的变化还是很值得关注的,因为之前没人知道给单向Transformer语言模型量级提高很大,再用高质量语料来训,就能获得很好的生成模型。这也是为什么GPT都没啥人关注,直到被BERT点名出来吊打,才有人知道有GPT这东西,一看还就只是一个Transformer解码器。

那么 GPT3值得关注的地方到底在什么地方呢,那就在它厚厚的实验分析和细节内容里了。

总结一下目前对于GPT3持赞同和反对态度的两方意见,接下来文摘菌带大家详细看看这个模型的优劣势。

正方:不失美味!整体表现出的泛化性很有价值

对于GPT3全面的实验分析,大部分人还是买账的。

特别GPT3主要在三个设定下进行的大量 NLP 实验,其中包括Zero-Shot(没有样本,只是在上下文给出一段自然语言描述),One-shot(在上下文中给出一个样本),还有Few-Shot(在上下文中给出一些样本)。而一般大家比较关心的预训练模型精调,论文里根本都没怎么做,直接留给未来研究了。

其中最重要的一点,GPT3相比起GPT2没有什么本质上的突破,模型架构还是一样,训练目标也都一样。变化的只是模型大小,数据多少,而这些在这个后BERT时代并不是什么新奇创举。当然在GPT2的时候还是很让人感到很新鲜,因为没什么人这么做。

GPT3这样并没有给AI底层技术带来任何推动,毫无疑问让人看得很乏味。

打个比方就是,比如某些石油大国很有钱,可以投入很多钱和工程能力去修超级高楼,虽然刷新了最高楼记录,但对于修楼技术可能并没带来什么推动,也没有人会质疑没有修出这个高楼的美国就没有能力去修。

这种单纯的堆量级而带来的所谓SOTA提高,意义不大,反而会让人忽视很多更底层值得去研究的问题。

最近就有文章指出,很多引人注目的AI领域进展其实都是虚的。比如今年MLSys对81种剪枝算法调研发现,十年间可能并没有什么提升。还有去年关于搜索引擎中信息检索算法调研发现,真正里程碑其实在2009年就提出。此外最近一篇关于损失函数对比的论文发现,准确率自2006年其实就没有提高。

同样的,如果从模型架构,损失函数,优化策略来看GPT3,难免会感到失望,因为几乎没有太多变化。况且在GTP2这么高调的情况下,对GPT3期望也不免过高。

此外,还有有些其他点,比如说过度强调参数量级与指标的对比,而没有对few-show这些里面的一些参数K做足够探索,还有GPT3在一些Benchmark上的表现的并不好,比如说在SuperGLUE上。

结语

整体来说,我个人对GPT3持有的观点还是比较正向,因为研究有很多方向,而GPT3相当于给模型大小这个方向推到了极致,而且它也在验证The Bitter Lesson里提到的观点,一个简单可放大的算法,加上大量算力就可以产生不一样的效果。事实上,它在这篇论文中展示的泛化能力分析,就可以看到这样一种将语言模型推到极致后带来的不同。让人不禁想,再推下去,是否能够真正到达人类级别的泛化力。

虽然很多大牛认为这条所谓AGI路走不太通,所以现在都在提倡自监督学习或神经生物学启发的方法。但这也并不说明这条路的探索是无意义的,即使失败,从中获得的知识也必定有助于找到正确的方向。

至于对GPT3反面的一些观点,这并不只是GPT3这个模型的问题,这是当前整个NLP预训练语言模型时代的问题,大家发现与其一顿操作猛如虎,定睛一看原地杵的提出一些新算法,还不如直接在预训练模型这样基本上能一定保证收益的方向上发力,收益更明显。但这带来的也是算力需求的飙升,只有大实验室和大公司才有钱来研究,而没钱没设备的就只能坐在下面看神仙打架流口水(没错说的就是我)。

但这也有好处,会让那些没资源的小实验室去更深地思考为什么这些技巧架构有用,同时能否想出替代的方法。

此次OpenAI重金砸出GPT3,到底是一桌美味佳肴,还是一碗糠咽菜?你有什么看法,欢迎在评论区讨论~

相关报道:

https://www.lesswrong.com/posts/ZHrpjDc3CepSeeBuE/gpt-3-a-disappointing-paper

https://leogao.dev/2020/05/29/GPT-3-A-Brief-Summary/

https://www.reddit.com/r/MachineLearning/comments/gsivhg/r_language_models_are_fewshot_learners/

https://singularityhub.com/2020/05/31/microsoft-just-built-a-world-class-supercomputer-exclusively-for-openai/

https://web.archive.org/web/20200603035349/https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everything/

https://web.archive.org/web/20200529051002/https://www.sciencemag.org/news/2020/05/eye-catching-advances-some-ai-fields-are-not-real

https://www.gwern.net/newsletter/2020/05#

https://dl.acm.org/doi/abs/10.1145/3331184.3331340

https://proceedings.mlsys.org/book/296.pdf

https://arxiv.org/abs/2003.08505

花粉社群VIP加油站

2
点赞
赏礼
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与花粉乐分享无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者 部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非花粉乐分享)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:2443165046 邮箱:info@hflfx.com
关于作者
Weirdo(采蜜高手)
文章
544
主题
11
关注
0
粉丝
0
点击领取今天的签到奖励!
签到排行
随手拍
54个圈友 0个话题
华为手机随手拍,记录生活点滴之美好
华为P30pro
51个圈友 0个话题
这里是华为P30pro手机交流圈,欢迎华为P30pro用户进群交流
体验官
60个圈友 2个话题
华为花粉体验官,体验官专属的交流群
登录后查看您创建的圈子
登录后查看您创建的圈子
所有圈子
猜你喜欢
杭州互联网违法和不良信息举报平台 网络110报警服务 浙ICP备17046585号
2
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索