编辑:LRS 好困
【新智元导读】自己部署一个ChatYuan,再也不用担心网络拥堵了!
前段时间,元语智能开发团队训练了一个类似ChatGPT的功能型对话大模型ChatYuan,并在网页版中开放了试玩接口。
现在你也可以在自己的机器上部署一个ChatYuan了!
项目地址:https://github.com/clue-ai/ChatYuan
2. Huggingface
项目地址:https://modelscope.cn/models/ClueAI/ChatYuan-large
加载模型:
多轮对话数据格式:
三大统一:统一模型框架(text-to-text),统一任务形式(prompt),统一应用方式(zero-shot/few-shot)(T0)大规模预训练:在t5-large版基础上,使用数百G中文语料,训练了100万步,累积训练了1.5万亿个中文字词级别token大规模任务数据:使用了16种任务类型,数百种任务,累积亿级别任务数据混合预训练:一方面将下游任务作为预训练语料,另一方面将下游任务和预训练语料一起训练,减少任务灾难遗忘以及缩短预训练和下游任务的距离,更好的适应下游任务(ExT5)混合采样:针对众多数据量差异极大的任务,采用在每个训练batch内对所有的任务进行按照比例采样,根据任务的数据量进行平滑采样,并且同时限制任务数据量采样池的上限。平滑采样可以减少任务训练有偏危害,在每一batch内训练可以减少异质任务之间训练负迁移的情况(T5)分阶段训练:一方面指在预训练分阶段,涉及训练序列长度的分阶段(128和512),加快预训练速度(Bert);另一方面,在下游训练分阶段, 涉及学习率和序列长度的变化以及递减式对下游任务的数据量限制,更好的适应下游的不同任务。增加语言模型的训练:参考t5.1.1, 除了使用Span Corrpution构建的方式进行无监督训练,同时在使用prefix LM的方式训练,增强生成任务的能力(LM adapted)增加对模型的encoder以及decoder的训练:根据下游任务数据分别构建Data_text,Data_target预训练数据语料,加入到预训练中,分别增强模型的encoder理解能力和 decoder的生成能力(见UIE)重新构建模型中文字典:使用sentencepiece上在千亿token上学习并构建模型字典,更加符合中文语言习惯后续工作
目前版本可以进行问答、对话和各种创意性写作或文本生成,相对于线上的版本,它的意图理解和生成能力在一些场合还有比较大的提升空间;它也还不能较好实现推理或复杂的任务。之后,会根据反馈进一步改进现有版本。
花粉社群VIP加油站
猜你喜欢