花粉乐分享平台宣传视频
> 乐学堂 > > GPT-3回答问题不靠谱?OpenAI找来人类“调教师”,终于教明白了
GPT-3回答问题不靠谱?OpenAI找来人类“调教师”,终于教明白了
来源:量子位
2023-04-20 17:25:10
410
管理

晓查 发自 凹非寺

量子位 | 公众号 QbitAI

如何用几句话向6岁儿童解释登月?

GPT-3给出的答案实在离谱:

向孩子解释引力理论、相对论、大爆炸、进化论……

RLHF总共分三步:

第一步,找一些人写下示范答案,来微调GPT-3模型,训练监督模型baseline。

第二步,收集某个问题的几组不同输出数据,由人类对几组答案进行排序,在此数据集上训练奖励模型。

第三步,使用RM作为奖励函数,近端策略优化(PPO)算法微调GPT-3策略,以强化学习方法最大化奖励。

这种方法存在一个局限性在于它引入了“对齐问题”,因为模型仅根据对齐客户的NLP任务,那么可能会在学术NLP任务上的表现更糟。

OpenAI发现了一个简单的算法更改,可以最大限度地减少该问题:在强化学习微调期间,混合用于训练GPT-3原始数据的一小部分,并使用正态似然对最大化(normal log likelihood maximization)来训练这些数据。

这大致能保持内容安全和符合人类偏好,同时缓解学术任务上的效率下降,在某些情况下甚至超过了GPT-3 baseline。

实验结果

在公开数据集上,InstructGPT与GPT-3相比产生的模仿假象更少、有害性更低。而且InstructGPT编造事实的频率较低。

但OpenAI表示InstructGPT仍有许多要改进的地方,比如接受的都是英语的训练,因此偏向于英语文化价值观,给语句标注的人的偏好,也会影响GPT-3的“价值观”。

总之,纠正GPT-3的三观,还有很长的路要走。

参考链接:[1]https://openai.com/blog/instruction-following/[2]https://github.com/openai/following-instructions-human-feedback[3]https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf

花粉社群VIP加油站

2
点赞
赏礼
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与花粉乐分享无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者 部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非花粉乐分享)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:2443165046 邮箱:info@hflfx.com
关于作者
理想青年(采蜜高手)
文章
456
主题
0
关注
0
粉丝
0
点击领取今天的签到奖励!
签到排行
随手拍
54个圈友 0个话题
华为手机随手拍,记录生活点滴之美好
华为P30pro
51个圈友 0个话题
这里是华为P30pro手机交流圈,欢迎华为P30pro用户进群交流
体验官
60个圈友 2个话题
华为花粉体验官,体验官专属的交流群
登录后查看您创建的圈子
登录后查看您创建的圈子
所有圈子
猜你喜欢
杭州互联网违法和不良信息举报平台 网络110报警服务 浙ICP备17046585号
2
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索