编辑:桃子
【新智元导读】用GPT-4搞科研未来或许成为每个人的标配,但是究竟如何高效利用LLM工具,还得需要技巧。近日,一位哈佛博士分享了自己的经验,还获得了LeCun的推荐。GPT-4的横空出世,让许多人对自己的科研担忧重重,甚至调侃称NLP不存在了。
与其担忧,不如将它用到科研中,简之「换个卷法」。
来自哈佛大学的生物统计学博士Kareem Carr称,自己已经用GPT-4等大型语言模型工具进行学术研究了。
他表示,这些工具非常强大,但是同样存在一些非常令人痛苦的陷阱。
我发现我进入了一种心流状态,我能够继续前进。这意味着我可以工作更长时间,而不会倦怠。
最后一句忠告:小心不要被卷入副业。这些工具突然提高生产力可能会令人陶醉,并可能分散个人的注意力。
关于ChatGPT的体验,Carr曾在领英上发表了一条动态分享了对ChatGPT使用后的感受:
作为一名数据科学家,我已经用OpenAI的ChatGPT做了几周的实验。它并不像人们想象的那样好。
尽管最初令人失望,但我的感觉是,类似ChatGPT的系统可以为标准数据分析工作流程增加巨大的价值。
在这一点上,这个价值在哪里并不明显。ChatGPT很容易在简单的事情上弄错一些细节,而且它根本无法解决需要多个推理步骤的问题。
未来每个新任务的主要问题仍然是评估和改进ChatGPT的解决方案尝试是否更容易,还是从头开始。
我确实发现,即使是ChatGPT的一个糟糕的解决方案也倾向于激活我大脑的相关部分,而从头开始则不会。
就像他们总是说批评一个计划总是比自己想出一个计划更容易。
网友对于AI输出的内容,需要进行验证这一点,并称在大多数情况下,人工智能的正确率约为90%。但剩下10%的错误可能是致命的。
Carr调侃道,如果是100%,那我就没有工作了。
那么,为什么ChatGPT会生成虚假的参考文献?
值得注意的是,ChatGPT使用的是统计模型,基于概率猜测下一个单词、句子和段落,以匹配用户提供的上下文。
由于语言模型的源数据规模非常大,因此需要「压缩」,这导致最终的统计模型失去了精度。
这意味着即使原始数据中存在真实的陈述,模型的「失真」会产生一种「模糊性」,从而导致模型产生最「似是而非」的语句。
简而言之,这个模型没有能力评估,它所产生的输出是否等同于一个真实的陈述。
另外,该模型是基于,通过公益组织「Common Crawl」和类似来源收集的公共网络数据,进行爬虫或抓取而创建的,数据截止到21年。
由于公共网络上的数据基本上是未经过滤的,这些数据可能包含了大量的错误信息。
近日,NewsGuard的一项分析发现,GPT-4实际上比GPT-3.5更容易生成错误信息,而且在回复中的说服力更加详细、令人信服。
在1月份,NewsGuard首次测试了GPT-3.5,发现它在100个虚假新闻叙述中生成了80个。紧接着3月,又对GPT-4进行了测试,结果发现,GPT-4对所有100种虚假叙述都做出了虚假和误导性的回应。
由此可见,在使用LLM工具过程中需要进行来源的验证和测试。
参考资料:
https://twitter.com/kareem_carr/status/1640003536925917185
https://scholar.harvard.edu/kareemcarr/home
https://www.newsguardtech.com/misinformation-monitor/march-2023/
花粉社群VIP加油站
猜你喜欢